
Hooge parameter shows a strong dependence on V,,, being a, -5 
x 1W for V,, = OV. We suggest that llfnoise sources located in 
the channel are linked to electron mobility fluctuations, owing to 
carrier scattering by the depletion regions surrounding disloca- 
tions. Besides their high density, screening effects by the channel 
electrons significantly reduce their effect on the HEMT llfnoise 
behaviour. 
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Sliding mode control for mismatched 
uncertain systems 

Kuo-Kai Shyu, Yao-Wen Tsai and Chiu-Keng Lai 

The major dificulties in sliding mode control (SMC) design are 
the chattering phenomenon and a system with mismatched 
uncertainties. An effective design procedure is proposed to 
alleviate these two dificulties, while retaining the benefits 
achieved in conventional SMC design. 

Introduction: In a sliding mode, if the controlled system satisfies 
the invariance condition [ 11, the system behaviour is independent 
of the uncertainties and disturbances. 

However, in the sliding mode control method, two major prob- 
lems should be considered. First, the chattering phenomenon is 
highly undesirable because it may excite high-frequency 
unmodelled plant dynamics. Secondly, if the invariance conditions 
are not satisfied, the system behaviour in the sliding mode is not 
only govemed by the sliding surface, but also determined by the 
mismatched uncertainties. To solve this problem, a method has 
been presented [2] which uses sliding mode control for a class of 
systems with mismatched uncertainties. However, this method 
needs to satisfy other matching conditions for a reduced-order sys- 
tem. Furthermore, the chattering problem is not considered. 

In this Letter, we consider a class of uncertain systems in which 
the invariance condition is not satisfied. Several important design 

procedures are presented. With a continuous control law, the 
existence and reachability of a sliding mode (the hitting phase) is 
established. In the sliding mode, the method guarantees asymp- 
totic stability (the sliding phase) even if the system has mis- 
matched uncertainties. Moreover, the chattering phenomenon is 
removed. 

-15 4 I I I 1 
30 40 

time, s m 
0 10 20 

Fig. 1 State response: x,(t), x2(t) and x3(t) 

0 10 20 30 
time, s m 

Fig. 2 Sliding function o( t )  

System formulation: Consider the following uncertain systems: 

k ( t )  = Az(t)  + Bu(t) + f(z, t )  (1) 
where x(t) E R” is the state vector, u(t) E Rm is the control input, 
and the continuous function f(x, t )  represents the uncertainties 
with the matched part and mismatched part, i.e. the invariance 
condition is not satisfied. Note thatf(x, t )  is uniformly bounded 
with respect to time t ,  and locally uniformly bounded with respect 
to state x. 

We denote the sliding surface by o(t) = 0, where the sliding 
function o( t )  = Sx(t) is an m-state vector and S has full rank m 
such that SB is nonsingular. The following assumptions are 
needed: 
(i) Al: There exists a known non-negative continuous function p(.) 
such that IIAx, t)ll I p(x, t), where 11.11 denotes the standard Eucli- 
dean norm. 
(ii) A2: The pair (A, B) is controllable and matrix B has full rank. 

Hitting phase: We can now give a continuous control input which 
drives the state trajectories of the system (eqn. 1) onto the sliding 
surface o(t) = 0 in the state space, and the system remains in it 
thereafter. 

Theorem 1: Suppose that the uncertain system (eqn. 1) satisfies 
assumptions A1 and A2. Let the control input be 

u(t)  = - (SB)- l[SAz(t)  + Pg(t)]  

where P E Pxm is a positive symmetric matrix, E, a 0, p (x,t) = 
IloT(r)Sllp(x, t )  and ~ ( x ,  t)  = (oT(r)SB)Tp(x, t)llloT(t)SBll. Then the 
state trajectories will hit the sliding surface o(t) = 0 subject to any 
initial condition. 

Proof of theorem I :  In the hitting phase oT(t)o(t) > 0; using the 
Lyapunov function candidate V(t) = oT(t)o(t)/2, we obtain 
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P(t) = aT(t)a( t )  

Since lio*(t)Slip(x,t) = Il~(x,t)ll, we have 

5 -a'(t)Pcr(t) + 
Now define w(t) = oT(t)Po(t), we have 0 < V(t) = V(0) + ji ?(z)dT 
< V(0) + 
Taking the limit as t approaches infinity on both sides of this me- 
quality, we have liml+- Ji w ( ~ ) &  < V(0) + da < 00. According to 
the Barbalat Lemma [3], we obtain lim,,,w(t) = 0. That is o(t) 4 
0 as t 4 00. Hence the theorem is proved. 

[-w(z) + & c a T ] d ~  = V(0) - Ji w(z)dz + (da)(l - 

0' 

time, s 

Fig. 3 Control input u(t) 

Sliding phase: In this Section, we derive some conditions such that 
the system of eqn. 1 on the sliding surface is asymptotically stable 
even though the invariance condition does not hold. First, the 
results [4] for determining the sliding surface are as follows. 

Consider the system X = Ax + Bu, let J = diag{h,, h2, ..., A,-,}, 
where the eigenvalues I,, j = 1, 2, ..., n - m are real, distinct. By 
assumption A2, matrices WE Rnn(n-m) and N E Pxn exist such that 
[A + BN] W = WJ, If SW = 0, we have Range( Wj n Range(B) = 
( 0 )  because S B  is invertible. Hence [W B] is nonsingular. The 
inverse [ W B] has the form [( Wg)' (Bg)qT, where Wg and B denote 
the generalised inverses of Wand B,  respectively. 

Selecting S = Bg and a transformation matrix T such that y( t )  = 
Tx(t), where T = [(W)' (,S')q' E PXn with T-l = [WB], the trans- 
formed state y(t)  is partitioned as 

where z(t) = Wgx and o(t) = Sx. Let 

( 3 )  

then eqn. 1 can be rewritten in the form 

4 t )  = A,,z(t) + A,,o(t) + f ( z ( t ) ,  t )  
b(t)  = Azlz(t) + Azza(t) + ~ ( t )  + S f ( W z  + BO, t )  

(4) 
i 

where the order-reduced uncertainty f ( z ( t ) ,  t )  has the form 
f ( z ( t ) ,  t )  = WgAWz + Bo,  t )  withAWz + Bo,  t )  = f(x, t). Theo- 
rem 2 will show that a system in the sliding phase is asymptoti- 
cally stable. 

Theorem 2: If f (z(t), t )  satisfies the uniform Lipschitz condition 
lif(zl(& t)  - f ( z2( t ) ,  t)ll < kllzl(t) - z2(t)ll where 0 < k < 0.5 h,,, (e) /  1 1  P 1 1  with P ,  (2 E R(n-m)x(nm) are symmetric, positive-definite 
matrices satisfying the Lyapunov equation A,: P + P A,, = 
- Q , then the uncertain system (eqn. 1) on the sliding surface o(t) 
= 0 is asymptotically stable. 

Proof of theorem 2: In the sliding mode, since o ( t )  = 0 and 6 ( t )  = 
0, it can be seen by eqn. 4 that i (t) = Al,z(t) + f (z(t), t). 

Using a Lyapunov function candidate V ( t )  - zT(t)pz(t), we 
then have 

V ( t )  = i T ( t ) P Z ( t )  + zT(t)Pi(t) 
= -zT(t)Qz(t)  + 2 Z ( t ) P f ( Z ( t ) , t )  (5) 

By using eqn. 5 and the fact that zT( t )Qz( f )  2 &,,,n(Q)ljz(t)112 and 
IlPf(~(t>, t)ll 5 kllPll .ll~(N we have v(t) 2 -LdL?)lI 4t)l12 + 
2kllPll 11z(t)l12. Hence V ( t )  is negative. The proof is completed. 

Example: To illustrate the design technique, consider the system 
11, 21 

1-0.03 0.01 0.01 1 
L-0.09 0.03 -0.17'1 

A = -0.05 -0.15 0.05 
B= ['I 

andf(x, t )  = AAx(t) + f i ( t )  where 

A A =  

0 0 1 0.11+0.44 sin(3.14t) 0.01+0.004 cos(3.14t) 0.008+0.002 sin(6.28t) 

0.55+0.220 sin(3.14t) 0.05+0.020 cos(3.14t) 0.040+0.010 sin(6.28t) 

0.50 sin(3.14t) 

0 

5 sin(3.14) 
fl(t) = [ 0 ] 

Then we have 11 f(x,t) 1 1  5 0.93411 x(t) 11+5 = p (x,t). 
Select the poles in the sliding mode to be h, = 4 1 4 ,  & = -0.26. 
Following the sliding phase method, we design the sliding function 
o(x) = Sx = [15 1.4 l]x. For the control input (eqn. 2), we select P 
= 1, E = 9, and a = 0.01. Fig. 1 shows the state response subjected 
to the initial condition x(0) = [l 0 0IT. 

Fig. 2 displays the variation in the sliding function with respect 
to time. The corresponding control input is shown in Fig. 3. It is 
seen from these Figures that the major problems in conventional 
SMC design such as the chattering phenomenon and the effect of 
undesirable mismatched uncertainty are both solved by this pro- 
posed design procedure. 
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